Dynamic subsidence and uplift of the Colorado Plateau

نویسندگان

  • Lijun Liu
  • Michael Gurnis
چکیده

We use inverse models of mantle convection to explore the vertical evolution of the Colorado Plateau. By satisfying multiple constraints (seismic tomography, stratigraphy in the western United States and Great Plains, and other structural and volcanic data adjacent to the plateau), the model provides predictions on the continuous history of Colorado Plateau vertical motion since 100 Ma. With the arrival of the fl at-lying Farallon slab, dynamic subsidence swept from west to east over the plateau and reached a maximum ca. 86 Ma. Two stages of uplift followed the removal of the Farallon slab below the plateau: one in the latest Cretaceous and the other in the Eocene with a cumulative uplift of ~1.2 km. Both the descent of the slab and buoyant upwellings raised the plateau to its current elevation during the Oligocene. A locally thick plateau lithosphere enhances the coupling to the upper mantle so that the plateau has a higher topography with sharp edges. The models predict that the plateau tilted downward to the northeast before the Oligocene, caused by northeast-trending subduction of the Farallon slab, and that this northeast tilting diminished and reversed to the southwest during the Miocene in response to buoyant upwellings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking Surface Evolution with Mantle Dynamic Processes Using Adjoint Models with Data Assimilation

...............................................................................................................................iv Chapter 1: Introduction ................................................................................................1 Chapter 2: Adjoint Method in Mantle Convection .............................................5 2.1 Theoretical Basis of the Adjoint Method ..........

متن کامل

Deep mantle forces and the uplift of the Colorado Plateau

[1] We introduce a quantitative model of global mantle convection that reconstructs the detailed motion of a warm mantle upwelling over the last 30 Ma towards the interior of the southwestern USA from observed present-day mantle heterogeneity. The onset and evolution of uplift in the central Basin and Range province and Colorado Plateau during this time is determined by tracking the topographic...

متن کامل

The active southwest margin of the Colorado Plateau: Uplift of mantle origin

During Cenozoic time, the Colorado Plateau was raised about 2 km above sea level. The most-recent and best-documented uplift of the plateau (;1 km) has been concentrated at its southwest margin between 6 and 1 Ma, whereas the eastern Colorado Plateau may have been at high elevations since Eocene time. To better understand the recent tectonic activity at the southwest margin of the Colorado Plat...

متن کامل

Colorado Plateau uplift and erosion evaluated using GIS

Study of the interaction between uplift and erosion is a major theme of our science, but our understanding of their interplay is often limited by a lack of quantitative data. A classic example is the Colorado Plateau, for which the starting and ending points are well known: The region was at sea level in the Late Cretaceous, and now, the deeply eroded land surface is at ~2 km. The path of the l...

متن کامل

The mystery of the pre–Grand Canyon Colorado River— Results from the Muddy Creek Formation

The Colorado River’s integration off the Colorado Plateau remains a classic mystery in geology, despite its pivotal role in the cutting of Grand Canyon and the region’s landscape evolution. The upper paleodrainage apparently reached the southern plateau in the Miocene, and recent work supports the longstanding idea that the river was superimposed over the Kaibab uplift by this time. Once off th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010